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It is shown that the dilatational terms that need to  be modelled in compressible 
turbulence include not only the pressure-dilatation term but also another term - the 
compressible dissipation. The nature of the compressible velocity field, which 
generates these dilatational terms, is explored by asymptotic analysis of the 
compressible Navier-Stokes equations in the case of homogeneous turbulence. The 
lowest-order equations for the compressible field are solved and explicit expressions 
for some of the associated one-point moments are obtained. For low Mach numbers, 
the compressible mode has a fast timescale relative to the incompressible mode. 
Therefore, i t  is proposed that, in moderate Mach number homogeneous turbulence, 
the compressible component of the turbulence is in quasi-equilibrium with respect to 
the incompressible turbulence. A non-dimensional parameter which characterizes 
this equilibrium structure of the compressible mode is identified. Direct numerical 
simulations (DNS) of isotropic, compressible turbulence are performed, and their 
results are found to be in agreement with the theoretical analysis. A model for the 
compressible dissipation is proposed ; the model is based on the asymptotic analysis 
and the direct numerical simulations. This model is calibrated with reference to the 
DNS results regarding the influence of compressibility on the decay rate of isotropic 
turbulence. An application of the proposed model to  the compressible mixing layer 
has shown that the model is able to predict the dramatically reduced growth rate of 
the compressible mixing layer. 

1. Introduction 
When the Mach number of a turbulent flow increases, the fluctuations in the 

thermodynamic variables - density, temperature and pressure - become progress- 
ively more important. The velocity field can no longer be assumed t o  be solenoidal 
when the flow Mach number is significant. Also, the turbulent flow radiates sound 
into the ambient fluid. The differences in the nature of the various fluctuating fields 
in a compressible medium have been illustrated by Kovasznay (1953) through the 
decomposition of the turbulence into three components, namely, the vorticity, 
acoustic and entropy modes. Turbulence modelling for compressible flows has to 
account for the additional correlations involving both the fluctuating thermo- 
dynamic quantities and the fluctuating dilatation. I n  low-speed flows too, significant 
fluctuations in density and dilatation can occur in various situations, such as, the 
mixing of fluids with different densities, turbulent combustion, and turbulent 
boundary layers with strongly heated walls. This paper is concerned with only high- 
speed flows. The role of thermodynamic and dilatational fluctuations in low-speed 
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flows is probably different from that in high-speed flows ; for example, a supersonic 
shear layer a t  Mach 3 shows significant reduction in the growth rate of its width 
relative to the incompressible shear layer ; however, a low-speed, variable-density 
shear layer having the same density difference as the Mach 3 shear layer exhibits a 
relatively mild change in growth rate with respect to its constant-density 
counterpart. 

Among the various additional correlations introduced into the problem owing to  
compressibility, only the class of correlations involving the fluctuating dilatation is 
considered here. The need for modelling the pressure-dilatation is generally accepted ; 
we show, however, that there is another dilatational correlation - the compressible 
dissipation - which also merits attention. 

According to Morkovin’s hypothesis (Morkovin 1964 ; Bradshaw 1977), direct 
compressible effects on the turbulence may be ignored when the ratio of the root- 
mean-square (r.m.s.) density fluctuations to  the mean density is small. Consequently 
(Bradshaw 1977), variable mean density extensions of incompressible turbulence 
models are expected to give good results in turbulent boundary layers with the free- 
stream Mach number M < 5 ,  and in compressible jets with M < 1.5. Apart from the 
intensity of the density fluctuations, there is another indicator of the intrinsic 
compressibility of high-speed turbulence : the turbulent Mach number Mt = q/c, 
where q2 is twice the turbulent kinetic energy, and cis the local mean speed of sound. 
The turbulent Mach number may be a more direct gauge of compressibility effects 
than the ratio of density fluctuations; for example, the latter quantity is large in the 
shear layer between two low-speed streams with different densities, however, the 
turbulent Mach number is small, and the change in growth rate is also 
correspondingly small. In the present paper, using asymptotic theory and direct 
numerical simulations, we show that the compressible dissipation is naturally related 
to the turbulent Mach number. 

Turbulent fluctuations, which are contained in a bounded domain, radiate sound 
into the surrounding region. The nature of the sound field a t  large distances from the 
turbulence is one of the major concerns of aero-acoustics. In order to predict the 
radiated sound, it is necessary to characterize properly the coupled density and 
velocity fields inside the flow domain, which of course is a primary concern of 
compressible turbulence modelling. For small Mach number, the radiated sound field 
is dominated by frequencies corresponding to  the characteristic frequencies of the 
energy containing eddies (see Crighton 1975), and has been shown by Lighthill (1952) 
to carry a very small fraction Mt of the energy required to sustain the turbulence in 
the bounded domain. We note that the present work does not treat the problem of 
sound propagation far away from the turbulence, but rather focuses on the changes 
in the stochastic quantities inside a turbulent flow, which are induced by the 
compressibility of the medium. 

The presence of shock waves is an important feature that distinguishes the high- 
speed flows from the low-speed ones. It is known that the interaction of a shock wave 
with a turbulent boundary layer leads to  a significant increase in turbulence intensity 
and shear stress across the shock (Sekundoz 1974; Mateer, Brosh & Viegas 1976; 
Delery 1981). Some of the basic mechanisms underlying the shock wave/turbulence 
interaction have been investigated through the numerical solutions (Zang, Hussaini 
& Bushnell 1984) of the Euler equations. Such compressibility effects may preclude 
successful extension of incompressible turbulence models to include compressibility 
solely through the variability of the mean density. 

The paper is organized as follows. In  $ 2  the dilatational terms that need to be 
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modelled in the Reynolds stress transport equation are formally obtained. In  $ 3  the 
dilatational terms are analysed by an asymptotic theory ; one of the main results of 
this section is the identification of a non-dimensional parameter F which is 
asymptotically equal to unity for low Mach number, compressible, homogeneous 
turbulence. In  $4 results of three-dimensional direct numerical simulations (DNS) of 
moderate Mach number, isotropic turbulence are presented and shown to be in good 
agreement with the theoretical findings of $3. In  $ 5  a model for the compressible 
dissipation, which is based on the asymptotic analysis and the DNS, is proposed; the 
model is calibrated with reference to the DNS results on the decay rate of 
compressible, isotropic turbulence ; and an application by Sarkar & Balakrishnan 
(1990) of the new model to the compressible shear layer is briefly considered. 
Conclusions are presented in $6. 

2. Dilatational terms in the turbulence transport equations 
In this section, we identify the correlations involving the fluctuating dilatation 

that need to be modelled in the Reynolds stress transport equations. It is shown that 
in addition to the well-known pressuredilatation, an additional term, the 
compressible dissipation, needs to be modelled. 

The compressible Navier-Stokes equations, along with an equation of state, 
govern the behaviour of the density p,  the velocity ui ,  the temperature T and the 
pressure p in a high-speed, compressible flow. Whcn the compressible flow is 
turbulent, an averaged form of the compressible Navier-Stokes equations is usually 
considered, wherein the instantaneous variables are decomposed into a mean and a 
fluctuating part, and the governing equations are averaged in order to yield 
equations for the mean variables. Usually Favre averages (density-weighted 
averages) are used for the velocity and temperature, while conventional Reynolds 
averages are used for the pressure and density ; primarily, because such a combination 
leads to  a simpler representation of the temporal derivatives and the convective 
terms in the averaged equations. We employ the above-mentioned approach too, and 
decompose the field variables as follows, 

ui = ci+u;, p = p+p' ,  
T = F+ !ll", p = p+p' .  

The overbar denotes the conventional Reynolds average and the prime denotes 
fluctuations with respect to the Reynolds average, while the tilde denotes the Favre 
average and the double prime denotes fluctuations with respect to the Favre average. 
The Favre average 6 of a field variable 4 is a density-weighted Reynolds average ; 

We consider a second-order turbulence closure where in addition to the mean 
equations, transport equations are included for the Favre-averaged Reynolds stress 
u-;' and the turbulence dissipation rate 6. The exact transport equation for u; ur is, 

6 = S I P .  

_c_ 

7 _I 

a,(pu;U;o+ (pcktL;u;),k = Pii-T, ik , ,+17,-p€i i+~u;, ,St i  

where 

16 

~~ 

p. a j  = a;, u;, + rik u;, ]c. 

F1.M 227 
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In  ( i ) ,  Pi* denotes the production, qjk denotes the diffusive transport, nij denotes the 
deviatoric part of the pressurestrain correlation, and denotes the turbulent 
dissipation rate tensor. The anisotropic part of eij is usually absorbed into the model 
for the pressure-strain correlation, while the trace of eil is written in terms of the 
turbulent rate 6 as given below, 

We note that the conventional Reynolds average of the Favre fluctuation u; is non- 
zero; in fact, 

p€ = a&;-,. 

is related to the turbulent mass flux p’.; by the expression 

- p’u; 
U“ = 

P i 

At first glance, it appears that the only term in (1) which contains the fluctuating 
dilatation d’ = uLSk is the pressuredilatation p”. However, we show below that in 
a compressible flow there is another term containing d’, which has its origins in the 
turbulent dissipation rate E .  The viscous stress ci, in a compressible flow is given by 

where we have assumed that the bulk viscosity is zero. Assuming constant viscosity, 
the following expression for the turbulent dissipation rate is obtained : 

c i j  = PL(Ui,, + uj, I )  - %d&, 

where the fluctuating strain rate s i c  = i(u;,, + u ; , ~ ) .  Even if the viscosity is not 
assumed constant, standard order of magnitude estimates lead to the following 
expression for the turbulent dissipation rate, which is asymptotically exact for high 
turbulence Reynolds number : 

Let us denote the fluctuating vorticity tensor by wil = ~ ( U ; , ~ - U ; , ~ )  and the 
fluctuating vorticity by 0:. On substituting the relationship 

~- 

j7€ = p(2sJ1 - g & 2 ) .  (2) 

The scalar U ; , ~ U ; , ~  satisfies the following equation (which may be verified by 
inspection) : ~- 

u & , Z  ui, k = (u;ul) ,rZ-2(u;,kul) , l  +u; ,kul , l .  (4) 
For homogeneous turbulence, (4) becomes the rather simple expression 

~~ 

uk, 1 ui, k = u;, k u;, 1 - 
( 5 )  = $2. 

For inhomogeneous turbulence, using standard order of magnitude estimates, ( 5 )  
may be shown to be asymptotically correct for high turbulence Reynolds number. 
On substituting ( 5 )  into (3),  we obtain 

p€ = p(2w;l W i l  +$F) 
= /T(w;+$F). (6) 

Thus, we have shown that for compressible turbulence the dissipation rate may be 
decomposed into 

p€ = p€s + pc,  
where 
and 
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Equation (7) is asymptotically exact for turbulence with high Reynolds number 
(which is of practical interest) and is exact for constant viscosity, homogeneous 
turbulence (which corresponds to the direct simulations discussed later). 

We call the component B,, which is associated with the vortical component of the 
velocity field, the solenoidal dissipation, while the component E , ,  which is associated 
with the dilatational component of the velocity field, is called the compressible 
dissipation. The asymptotic analysis of $ 3  leads to  the result (63), which implies that, 
in moderate Mach-number turbulence, only E ,  is substantially affected by changes of 
compressibility indicators such as the turbulent Mach number, while the fluctuating 
vorticity field and thereby E ,  is relatively unaffected by such changes. The direct 
numerical simulation results of figure 1 also show that moderate compressibility 
affects E ,  and not B,. 

Zeman (1990) has also independently used a similar decomposition of the 
dissipation rate into a solenoidal and a compressible part. Zeman considers the 
presence of eddy shocklets which are assumed to  augment only the compressible 
dissipation, bypassing the solenoidal energy cascade. We, on the other hand, identify 
the compressible and solenoidal parts of the turbulent dissipation and obtain the 
scaling of the compressible dissipation by asymptotic analysis of compressible 
turbulence, and validate the decomposition and scaling with direct numerical 
simulations. 

For polyatomic gases, the bulk viscosity may be comparable in magnitude to  the 
shear viscosity p and lead to an extra dissipation which has a functional form similar 
to that of E , .  The additional turbulent dissipation due to the non-negligible bulk 
viscosity can be easily modelled in the same way as the compressible dissipation 8, 
is modelled in $5 .  

3. Low-Mach-number asymptotics 

dimensionalized as follows : 
The dimensional variables which are denoted by superscript * are non- 

where 1: and u: denote a characteristic turbulence integral lengthscale and a 
turbulence velocity scale, respectively; p:, p:, and T: = p:/Rp: denote reference 
values for the density, thermodynamic pressure, and static temperature, re- 
spectively; and R denotes the gas constant. Reference values for the kinematic 
viscosity and the thermal diffusivity are respectively denoted by v: and a:. After 
using the above non-dimensionalization, the compressible Navier-Stokes equations 
take the form, 

a tP+UiP , i  = -Pu i , i ,  (10) 

The variables cIj and qd denote the viscous stress tensor and the heat flux, 
respectively. The non-dimensional parameters appearing in (lo)-( 12) are the Mach 
number M ,  = u:/(yp:/p:)i, the Reynolds number Re, = u: l:/v: and the Prandtl 
number Pr, = v:/a:. 
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We now consider homogeneous, compressible turbulence and adopt the approach 
of Erlebacher et al. (1991), in which the velocity is split into an incompressible, 
solenoidal velocity u: and a compressible velocity U P  ; and the pressure change with 
respect to the reference pressure is correspondingly split into an incompressible 
pressure p’ and a compressible pressure pc ,  as follows: 

ui = u:+u:, p = 1 + y igpI+pC.  (13) 
The variables p’ and u: satisfy the incompressible problem, i.e. 

1 
a, u: + u; u:,, = - p;, + - u:,n, 

:,% - 0. 

(14) 

(15) 
The following set of equations for u: and pc ,  has been derived and discussed by 
Erlebacher et al. (1991). 

Re, 
u. . - 

a, u: + .; u;, + u; u;i + .; u;,, + fi = 0, (16) 
Y i g  

a, pC + U:p:, + U y i  + 7~ U:p;, + y( 1 + y ~ p 1  +pc)  u:, a = - yitqa, PI + U;p;,). (17) 
Equations (16)-( 17) have been obtained by subtracting the incompressible problem 
(14)-(15) from the Navier-Stokes equations and dropping the viscous and heat 
conduction terms. 

The above problem can be investigated by an asymptotic analysis, wherein the 
Mach number M ,  is considered to be a small parameter, and the pressure is expanded 
in a power series with respect to M,. The leading-order term in the asymptotic series 
for the compressible pressure pc  is written as 

pc = SP, 
where S = O(Mr)  and P = O(1). 

When the Mach number Mt characterizing the large-scale turbulence eddies is small, 
the incompressible and compressible (acoustic) timescales are disparate. For a large 
eddy of characteristic length 1 and characteristic velocity u, the turbulence timescale 
is t ,  = O(l /u )  while the acoustic timescale is t ,  = O(Z/c). Here c is the characteristic 
sound speed. Since, tc / t ,  = O(u/c)  = O(M,), this acoustic timescale is small relative to 
the incompressible turbulence timescale when M ,  is small. 

We now consider the compressible problem on the small acoustic timescale t,, 
which allows the neglect of the convective and viscous terms in (16)-( 17). The lowest- 
order problem for the compressible fluctuations is the following set of equations : 

a , p + L ; ;  S = 0, (19) 

We refer to (19)-(20) as the acoustic truncation of the equations governing 
the compressible component. The zero subscript is used to denote the initial value 
$(xi, 0) of a variable $(xi, t )  ; for example, 

u;’(xi, 0) = (u;’)o(xi), P‘(zi, 0) = ( ~ ‘ ) o ( x i ) -  (21) 
The initial compressible velocity field ( ~ 2 ’ ) ~  satisfies the conditions 

v x = 0, v. = (&)(). 
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Thus, a Helmholtz decomposition is performed on the initial velocity field, and the 
initial value for the compressible velocity field is chosen to be irrotational and 
dilatational, while the initial value for the incompressible velocity field is chosen to be 
rotational and solenoidal. We note that for the homogeneous flows considered here, 
J u - n  is zero on the boundary, and the Helmholtz decomposition is unique. 

Let us denote the vorticity V x up' associated with the compressible velocity by 
up', and the dilatation V-up' associated with the compressible velocity by d'. On 
taking the curl of (20), and making use of the initial condition = 0, it follows 
that wF'(xi, t )  = 0. Thus the compressible velocity remains irrotational under the 
acoustic truncation of the governing equations. We emphasize that the actual up at 
a given time is not the irrotational part of the velocity field obtained by the 
Helmholtz decomposition of the full velocity field at that time into rotational and 
irrotational parts. Rather, uF satisfies a set of evolution equations, and the full 
compressible problem (without the acoustic truncation) allows uf to acquire a small 
amount of vorticity (estimated later in this section) as it evolves in time from its 
initial irrotational state. 

After some manipulation, (19) and (20) yield 

1 attaf--a;i, = 0. 
JC 

The above wave equations for the pressure and the dilatation are coupled through 
the initial conditions; the initial conditions for (22) are 

while those for (23) are, 

The explicit appearance of M ,  in (22) and (23) is removed by rescaling time through 
the transformation 

t 
7 ' - .  

Mr 
After using (26) to rescale time, the equations for P and d' take the form 

alTP-P:,, = 0, 
alld'-a:,, = 0. 

The initial conditions are 

where the quantity M,* is defined by the expression, 
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We define the turbulent Mach number Mt as 

where 

and i~ is the mean speed of sound. The quantity M ,  is a constant reference Mach 
number which appears when the Navier-Stokes equations are non-dimensionalized, 
while Mt is a local time-dependent and space-dependent Mach number characterizing 
the turbulent fluctuations. In  an initial-value problem of isotropic turbulence, M,  is 
chosen to be of the same order as the initial value ofM,. We can rewrite (31) in terms 
of the turbulent Mach number Mt as follows, 

where c, = c,*/u: is the non-dimensional, reference speed of sound. 
The system of equations (27) and (28) for the pressure P and the divergen$e d' are 

now solved using Fourier transforms. The Fourier transforms p(k,) and d(k,) are 
defined below, 

exp (ik,z,) P'(x,, 7) dz,, 

exp (ik,x,) &(xi, r )  dx,, 
(2n)3 'I d(k,, 7) = - 

where k, denotes the wavenumber vector. I n  Fourier transform space, (27) and (28) 
take the form a,,P+k2P = 0, (34) 

a,$+ k2Ci = 0, (35) 
while the initial conditions become 

and Ci(k,, 0) = Ci,, a,Ci(k,, 0) = M,* k2Po. (37) 
It is a simple matter to  obtain the solution of (34) and (35) which satisfies the initial 
condition (36) and (37). The solution is 

p(k,,r) = p,ccoskr--sinkr, 2 0  

kM,* 
d(k,, r )  = do cos k r  +Po kM,* sin kr. (39) 

Equations (38) and (39) represent solutions (in Fourier space) for the compressible 
pressure fluctuation P and the fluctuating dilatation d' ; these solutions were 
obtained by analysis of the acoustic truncation of the compressible problem. 
Recalling that the transformed time coordinate r is related to  the time t through (26), 
i t  is clear that the evolution of the compressible pressure and the dilatation from 
their initial values occurs in a non-dimensional time t = O(M,). Thus for small M,, the 
compressible part of the problem is associated with a fast timescale. 

It is now possible to obtain solutions for the pressure variance P ( r ) ,  the 
pressure-dilatation P"(r) ,  and the dilatational variance d'2(7). By definition, the 
pressure variance is related to the Fourier transform of the pressure as follows : 
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where I/ is .  the (sufficiently large) averaging volume, and lp(ki, 7)1 denotes the 
modulus of the complex variable p(ki, 7). Substituting (38) for p(ki, 7) into (40) leads 
to the following expression for the pressure variance, 

p'2(7) = JOE EP,  o( k)  cos2 k7 dk + ~ sin2 k7 dk - - JOm '+sin 2k7 dk, G2J: k2 M,* 
(41) 

where E4,,(k) denotes the initial value of the three-dimensional spectrum E&k) of the 
variable $. 

We now introduce the concept of acoustic equilibrium value. Let q5 be a stochastic 
correlation which evolves on the acoustic timescale t,. The acoustic timescale t ,  was 
shown to be a fast timescale, which is O(M,) smaller than the large-eddy turbulence 
timescale t,. We denote the acoustic equilibrium value of a variable by subscript A. 
Then the acoustic equilibrium value $A of the variable q5 is the asymptotically 
stationary value that q5 attains after many acoustic time intervals. Of course, the 
acoustic equilibrium is a meaningful quantity only if the acoustic truncation of the 
equations apply for a sufficiently long time, in other words, only if the acoustic 
timescale t, is sufficiently smaller than the other timescales in the problem. The other 
relevant timescales in the problem of homogeneous turbulence are : the turbulent 
timescale t, = k/s,  where k is the turbulent kinetic energy and s is the turbulent 
dissipation rate ; and the timescale associated with the mean velocity gradient t ,  = 
(C i , jC i , j ) - i .  Since t,/t, = O(M,), and in usual shear-driven turbulent flows t,/t, = 
O( l), the acoustic equilibrium is formally realizable when Mt 4 1. It should be noted 
that the acoustic equilibrium value corresponds to a quasi-equilibrium phase during 
the evolution of the variable; the variable remains stationary over the time interval 
t ,  4 t 4 t,. 

Mathematically, the acoustic equilibrium value to which p'2 evolves on the fast 
timescale t ,  is obtained by evaluating (41) in the limit 7 + 00. The Riemann-Lebesgue 
theorem, which states that fflf(k) eikt dk + O  as t + co provided f f l  If(k)ldk exists, is 
used to help evaluate this limit, and the following expression for the acoustic 
equilibrium (p)A of the pressure variance is obtained : 

a dk (p'") -- ( p ' 2 ) o + -  
* - 2  '[ - MF2Jo k2 ] 

Let us denote the compressible portion of q2 (which is twice the turbulent kinetic 
energy) by q i ;  by definition, we have the relation, 

, I  

q; = u: u: . 
The three-dimensional spectrum Ed( k)  of the dilatation and the three-dimensional 
spectrum E,E(k) of thc compressible portion of q2 are related by 

Ed(k)  = k2E,;(k). 

Using this relation, (42), yields 

= p), [l +FO],  

(43) 

(44) 
where F, denotes the initial value of the non-dimensional parameter F which is 
defined as, 
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An expression for the acoustic equilibrium of the compressible turbulent kinetic 
energy (q?.)A is now obtained. After rescaling time by 

t 
7 = -  

Mr ' 
(19) and (20) become 

6 
a7U;'+--P:i = 0. 

Mr Y 
(47) 

Multiplying (46) by (2S2P')/(y2M3, multiplying (47) by 2up', and adding the two 
resulting equations gives 

where M,* = 6/(yMr). Averaging (48) gives the following result for homogeneous 
turbulence, 

Thus, the quantity in square brackets in (49), which physically represents the full 
non-dimensional turbulent energy, does not change on the acoustic timescale, and 
consequently we have 

a,[p.E+M,*2F] = 0. (49) 

(&)A +M,*2(p'2)A = ( Q ; ) ~  +M,*2(p'2),. 

After substituting (44) into (50), we obtain 

where F is defined by (45). 

equilibrium of the non-dimensional parameter F is unity ; 
On dividing (51) by (44), we obtain the interesting result that the acoustic 

FA = 1. (52) 

The physical significance of F is better understood by reverting to dimensional 
quantities (denoted by superscript *). After some manipulation, F may be written as 

The numerator of (53) is twice the kinetic energy of the compressible component, and 
the denominator is twice the potential energy of the compressible component. Thus, 
the result FA = 1 implies that a t  acoustic equilibrium there is an equipartition 
between the kinetic and potential components of the compressible energy. Since (52) 
is a consequence of processes occurring on the acoustic timescale t,, as long as the 
other timescales of the problem (such as k / ~ )  are larger than tc ,  we have F N 1 for 
later time. Therefore low Mach number, homogeneous, compressible turbulence has 
an equilibrium structure characterized by 

F = l .  (54) 

We note that equipartition is known to be a feature of non-dissipative, linear wave 
motion. However, it is interesting that there is a component (namely, the 
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compressible mode) in the nonlinear, dissipative turbulent flow which satisfies 
equipartition for asymptotically low Mt. More important, we will show that direct 
numerical simulations support the approximate validity of the equipartition result 
for Mt < 0.5, and thus this result applies to turbulence a t  larger Mach numbers of 
technical relevance. 

We will now derive an alternative expression for F in terms of the turbulent Mach 
numberM, which will be useful later. On substituting the expression forM: from (33) 
into (45) ; recognizing that cand p are approximately constant on the acoustic time- 
scale, and are respectively equal to their initial, references values c, and p,; we obtain 

Here x denotes the ratio of compressible kinetic energy to  the total turbulent kinetic 
energy, that is, x=" q2 

q2 ' 

and p ,  is the non-dimensional ratio of the root mean square (r.m.s.) pressure 

An expression is now sought for the equilibrium value of the pressurdilatation 
P". Starting with (38) and (39), the pressurdilatation can be related to the initial 
conditions of the turbulence through 

P" = ~owE,d,o(k)cos2k.rdk-- ~ o m E d ~ ( k ) s i n P k r d k  
uM,* f m  

J kE,,,(k) sin 2 k ~ d k .  (57) 

Again using the Riemann-Lebesgue ~ theorem to evaluate the right-hand side of (57) in 
the limit 7 - t  00, gives (P 'd ' ) ,  = 0. 

The acoustic equilibrium value of the dilatational variance d'2 is obtained in a 
similar manner. The expression for d'2 is 

0 

d'2(7) = J:Ed,o(k)cos2k7dk+M:2 k2E,,,(k)sin2 k7dk 

+M:Jom kEPd,,(k) s in2k~dk,  

while the expression for (d'2)* is 

(d'2), = ;(d'"), k2E,,,(k) dk. Jow 
Thus, of the two dilatational correlations P" and dr2, the acoustic equilibrium of 
P" is zero, while the acoustic equilibrium of the positive definite quantity d'2 is 
nonzero. 

We had earlier asserted that, in moderate Mach number, homogeneous turbulence, 
the influence of compressibility on the vorticity field is much smaller than its 
influence on the dilatational field. We will now provide theoretical reasons for this 
result, which supplement the justification provided by the direct simulations of 
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figure 1.  It was shown previously that under the acoustic truncation, the compressible 
velocity fluctuation u:' remains irrotational. Thus, since the acoustic truncation is 
too severe for the purpose of obtaining the leading-order effect of M, on the vorticity 
field, the momentum equation for u:' has to be reconsidered. The equation for up' is 

s a, u;' + u;' u;; + .;' U& + u;' u;; + - P: = 0, 
Y e  

(59) 

where the viscous term has been neglected for simplicity. The equation for the 
vorticity w:' acquired by uF' is obtained by taking the curl of (59), and is given below 

I ,  I ,  

a, w ~ ' -  "j' uzi u;,, + u; '~ ; ' ,  + u , " ' ~ : : ~  + w:'u;; + W p ' ~ c '  Ai + uC' W& - w,"' uC' ($1  - - 0. 

In  deriving (60) we have used the vector identities (60) 

( B . V ) A  + ( A  .V) B = V ( A  .B) - B  x (V x A )  - A  x (V x B) ,  
v x  ( A  XB) = ( B . V ) A - ( A * V ) B - B ( V - A ) + A ( V . B ) .  

Since initially w:' = 0, the dominant terms in (60) after a short time are 

a, wpl- w;' u;; + u;' w:;* + uc' i.j - - 0. (61) 

Thus, the nonlinear convective term in the Navier-Stokes equations leads to the 
forcing of the compressible field by the solenoidal, incompressible field and 
consequent generation of vorticity w:'. The following equation for the enstrophy 
associated with uf is obtained by multiplying (61) by W: and averaging, 

gIt wp! W y  - Wl"$ W;' u:; + u;' W::i + w y  Wf u g  = 0. (62) 

A simple order of magnitude analysis of the above equation, after recognizing that 
the correlations between the incompressible and compressible variables must be 
prorated by the ratio of timescales of u:' and u:' which is O(M,), gives the following 

(63) 
result 

Recalling that the incompressible velocity field ut' satisfies the problem (14)-( 15), it  
is clear that  the change in the vorticity field induced by compressibility is completely 
represented by w;'. Finally, from (63), we conclude that the effect of compressibility 
on the enstrophy is a factor o f x  smaller than its effer t on the dilatational variance, 
and therefore in moderate - Mach number, homogent u s  turbulence, the solenoidal 
dissipation es = Vw;w; is relatively insensitive to M, in comparison with the 
compressible dissipation E ,  = $~d'2. 

To summarize, in this section we have identified certain variables of compressible, 
homogeneous turbulence which evolve from arbitrary initial conditions on a fast 
timescale t,, where t ,  = O(M, k / ~ ) .  The time evolution of these variables has a quasi- 
equilibrium phase in which the variable has a stationary value which we call the 
acoustic equilibrium value. We have also shown that these variables can be combined 
into a non-dimensional parameter F which, after starting from an arbitrary initial 
value, maintains a value of approximately unity; thus 

W:' Wf' = O(%) d'2. 

where M, = q/c is the turbulent Mach number, x is the ratio of compressible 
turbulent kineticmergz to the full turbulent kinetic energy, y is the ratio of specific 
heats, and p ,  = (pc");/p is the ratio of the r.m.s. compressible pressure to the mean 
pressure. 
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FIGURE 2. Time evolution of the compressible dissipation in a DNS case. 

.O 

FIGURE 3. Time evolution of the pressuredilatation for the DNS case of figure 1. 

4. Direct numerical simulation of compressible, isotropic turbulence 
Three-dimensional direct-numerical simulations (DNS) of compressible, isotropic 

turbulence were performed on a 643 grid for a variety of initial conditions. Details of 
the algorithm and numerics are provided in Erlebacher et al. (1987). The simulations 
correspond to a nominal turbulence Reynolds number Re, (based on the Taylor 
microscale) of 15. The turbulence Reynolds number is defined by Re, = qA/v  where 
the Taylor microscale h = (q2/m)i. 

The behaviour of the compressible dissipation and the pressuredilatation for a case 
with initial turbulent Mach number Mt,o = 0.5 is illustrated in figures 2 and 3. The 
compressible dissipation reaches its acoustic equilibrium value after an initial, fast 
transient, and then decays with a small superimposed acoustic modulation. The 
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FIGURE 4. (a) Early-time history of F for various DNS cases. ( b )  Late-time history of F for 
various DNS cases. 
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pressure-dilatation, which can be of either sign, shows a significant acoustic 
modulation, and tends to be more positive than negative. The direct simulations 
indicate that in the case of decaying isotropic turbulence, the pressure-dilatation, 
when averaged over the acoustic oscillations, is positive and smaller than the 
compressible dissipation. 

The asymptotic analysis of the previous section predicted that the non-dimensional 
parameter F = (y2W x ) / p ;  should be approximately equal to 1. The DNS show that, 
after starting from a variety of initial values, F indeed reaches a value of unity. 
Figure 4(a) shows the early-time behaviour of F for three representative cases; F 
attains its acoustic equilibrium value of unity in a non-dimensional time of O(M,). 
Figure 4 ( b ) ,  which depicts the late-time behaviour of F ,  shows that F exhibits 
relatively small excursions from its acoustic equilibrium value of unity. Even 
though the individual quantities such as decrease by about a factor of 3 in the 
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FIGURE 5. DNS results on the decay of isotropic turbulence for various initial conditions. 

time interval 0.4 < ( ~ ~ ) ~ t / k ~  < 2.0, the quantity F deviates from its theoretically 
predicted value of unity by less than 10%. If F is averaged over a few of its 
oscillations, the deviation of this averaged value from unity would be much smaller 
than 10%. 

Figure 5 shows the DNS results on the decay of the turbulence kinetic energy k for 
three values of the initial turbulent Mach number Mt, o.  The initial value of the non- 
dimensional r.m.s. pressure fluctuation was chosen as%,,, and, in order to eliminate 
the initial transient, F was set equal to unity. It is clear that an increase in the 
compressibility level tends to increase the decay rate of k. Evidently, compressibility 
leads to an additional source of dissipation for the turbulent kinetic energy. 

5. Modelling of the dilatational terms 
We will now develop models for the two dilatational terms - the pressure- 

dilatation, and the compressible dissipation - that appear in the Reynolds stress 
transport equations. The theoretical analysis indicated that low Mach number 
homogeneous turbulence is characterized by the relation F - 1, and the DNS showed 
that F N 1 for turbulent Mach numbers at least up toM, = 0.5 (which, in free shear 
flows, corresponds to the mean Mach number M being as large as 10). We will now 
make use of the result F N 1 for developing a simple algebraic model of the 
compressible dissipation E , .  The model essentially relates the turbulent Mach 
number, which is perhaps the most important quantity characterizing the intrinsic 
compressibility of high-speed turbulence, to the compressible dissipation. 

The compressible fraction of the dissipation rate x, = e,/e satisfies the following 
equation : 

M'2 
X E  = + 

0, W( + @d'2 
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where the compressible Taylor microscale A,, the solenoidal Taylor microscale A,, and 
the compressible fraction of turbulent kinetic energy x, are defined as follows, 

(66) 2 d'2f A, = (qc/ ) 9 

A, = (*i/rn)i, (67) 

x = 4 t / q 2 *  (68) 
Using (65) we obtain the following expression for f,, the ratio of compressible 

dissipation to the solenoidal dissipation : 

We assume that for compressible turbulence, &/A,  = 0(1), and from (69) obtain the 
asymptotic representation for small x : 

f, = P1X+O(X2) ,  (70) 
where P1 = O(1).  On using (64), and recognizing that p ,  = O(Mt) ,  we obtain the 
following expression from (70) : 

(71) 
where u1 = O(1). We now propose the following algebraic model for E, ,  which is 

E ,  = E ,  [.,N + O(M31, 

motivated by (71) 
8, = allMz:s,, 

where a1 is a constant of 0(1), whose numerical value remains to be evaluated. We 
note that a natural extension of the model (72) for large Mt is to add a term 
proportional toMt in (72). For now, we will limit ourselves to the simpler model (72). 
The solenoidal dissipation rate E ,  is calculated using the standard form of the 
incompressible dissipation rate transport equation. 

We also need a model for the pressurdilatation p". The asymptotic ana&csis 
predicts that the acoustic equilibrium of the compressible pressure-dilatation P d  is 
zero, while that of the compressible dissipation E ,  is non-zero. The DNS indicate that 
in the case of isotropic turbulence, except for the initial transient, the average of the 
pressure-dilatation p" over its oscillations is significantly smaller than the 
compressible dissipation E, .  Therefore, for the purpose of turbulence modelling, we 
absorb the effect of p" in the model of E , .  It should be noted that p" may be a 
substantial quantity in flows other than decaying isotropic turbulence, or if eddy 
shocklets are present. 

The model constant ctl is evaluated by considering the compressible, iso-decay 
problem. After introducing the models for the compressible dissipation and the 
pressure-dilatation, and using the standard dissipation transport equation, the 
governing equations become 

= 0, - dP 
dt 

d p  2 
dt C,  
- = --g(l+cC,M,2), 

(73) 

(74) 

dk 
dt 
- = -",(l+a,lMz:), (75) 
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FIGURE 6. Computations of the decay of isotropic turbulence with the model for compressible 
dissipation (a, = 1). 

Since = q2/(q2, (74) and (75) can be combined into the following equation f o r e  : 

do = -<Mf(l +alw) [1+0.5y(y- 1)%]. 
dt k (77) 

The term, -8 ,  +p”, which is the extra compressible term on the right-hand side of 
the exact turbulent kinetic energy equation, is replaced by the model, -al% es, in 
(75). 

Equations (75), (76) and (77) were integrated with a fourth-order, Runge-Kutta 
scheme using various values for both the model constant a1 and the initial Mach 
number Mt,o. The results of these computations were then compared with DNS. The 
model coefficient C,, was chosen to be 1.83 so as to reproduce the observed decay rate 
in physical experiments on high-Reynolds-number incompressible turbulence. Since 
the Reynolds number of the simulations is somewhat low, the turbulence decays 
faster in the simulations relative to the high-Reynolds-number experiments. 
Therefore, when comparing model results with the DNS, rather than looking for 
agreement between the actual value of the decay rate obtained with the model and 
that obtained with the DNS, we look for agreement’ regarding the effect of 
compressibility on the turbulence decay rate. After comparing figure 5 and figure 6 
i t  is clear that, as far as the influence of the turbulent Mach number on the decay rate 
of the turbulent kinetic energy is concerned, the choice of a1 = 1 gives good 
agreement between the results of the model and the DNS. Thus, the model for the 
compressible dissipation becomes 

% = a l e %  (78) 

where the model constant a1 = 1. 
The model (78) for the compressible dissipation has been applied by Sarkar & 

Balakrishnan (1990) to the compressible shear layer, within the framework of a 
Favre-averaged Reynolds stress closure. Details regarding the other modelling 
assumptions in the closure and the numerical implementation of the second-order 
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FIGURE 7. Schematic of the compressible shear layer. 
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FIGURE 8. Application of the model for compressible dissipation to the compressible shear layer; 
from Sarkar & Balakrishnan (1990). -, With compressible dissipation model; ..a>.., without 
compressible dissipation model ; A, Papamoschou & Roshko ; -0-, ' Langley experimental curve'; 
*, Elliott & Samimy; x , Petrie, Samimy t Addy ; 0, Ikawa & Kubota; , Wagner. 

closure, and results for various configurations of the compressible shear layer are 
provided by Sarkar & Balakrishnan. Figure 7 is a schematic of the particular 
configuration of the shear layer, a few of whose results are given here. A high-speed 
stream with velocity U, mixes with another stream with lower velocity U,. The free- 
stream values of the pressure, density and temperature are equal in the two streams. 
The normalized spreading rate C, defined by 

is the primary variable of interest. The shear-layer thickness 8(x)  is defined to be the 
distance between the two points of the mean velocity profile where the mean velocity 
is respectively U,+O.l(Ul-Uu,)  and U,+0.9(Ul-Uz) .  

Figure 8 shows model predictions and experimental da.ta on the influence of mean 
compressibility on the spreading rate of the mixing layer. The mean compressibility 
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of the compressible shear layer is characterized by the convective Mach number 
M ,  = (Ul- U2)/(c,+c2), where c1 and c2 denote the free-stream speed of sound in the 
two incident streams. I n  figure 8, we plot the non-dimensional spreading rate C8/( C8)o, 
where C, is the spreading rate of the mixing layer and (CJ0 is the spreading rate of the 
incompressible mixing layer. Though there is a systematic difference between the 
data of Papamoschou & Roshko (1988) and the data of the Langley curve (see Kline, 
Cantwell & Lilley, 1982), which is a consensus representation of various experimental 
investigations, it is clear that  first, the spreading rate decreases significantly when 
the convective Mach number increases; and second, after the initial decrease, the 
spreading rate is relatively insensitive to further increases in the convective Mach 
number. The prediction of the second-order closure, with the model for the 
compressible dissipation included, is in agreement with both the aforementioned 
trends exhibited by the experimental data. However, excluding the model of the 
compressible dissipation from thc second-order closure leads to only a mild decrease 
of spreading rate with increasing Mach number. 

6. Conclusions 
Asymptotic analysis of the Navier-Stokes equations for high-speed turbulence has 

isolated a compressible component, which evolves on a fast timescale relative to  the 
incompressible component, and the identification of a non-dimensional parameter F 
which characterizes a quasi-equilibrium of the compressible component. The variable 
F evolves from arbitrary initial values on a non-dimensional timescale of O(M,) ,  
attains an equilibrium value of unity, and remains approximately equal to unity for 
later time. The result F 1: 1, which is formally valid only for turbulent Mach number 
Mt < 1, has been shown to hold in the direct numerical simulations (DNS) of 
isotropic turbulence where Mt was varied between 0.01 and 0.5. 

It was established that there is another dilatational correlation - the compressible 
dissipation - which needs to be modelled in addition to the well-known pressure- 
dilatation. Both the theoretical analysis and the direct simulations suggest that 
the compressible dissipation is larger than the pressure-dilatation in low Mach 
number, homogeneous turbulence. A simple algebraic model, which is based on 
asymptotic analysis and DNS, has been proposed for the compressible dissipation. 
The model, which has been applied to the calculation of a high-speed shear layer, was 
able to capture the dramatically reduced growth rate of the high-speed shear layer. 

The present turbulence closure, where dilatational effects are included through a 
simple model having an algebraic dependence on the turbulent Mach number, will be 
extended in the future to  include transport equations for the thermodynamic 
turbulence statistics such as the density variance. The consequence of higher-order 
extensions of the asymptotic theory to  compressible turbulence modelling will also 
be explored. 
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